## **Targeting with Network Structural Information**

Bo-An Chen June 4, 2024

# Introduction

- Imagine a startup in the fashion industry striving to launch a new line of clothing.
- They want to leverage social media platforms to reach their target audience effectively.
- In their quest to maximize impact, they turn to network targeting strategies.
- What data should they collect, and how could this information be used?

- On average, how many friends does one person have?
- Does the number of friends differ across groups?
- Does each group occur to have homophily?

- In general, personal information is easy to extract. However, it's costly to reveal their social interaction.
- Now, we want to conduct a market experiment.
- It can be individual, regarding how many of their friends they chat about fashion.
- It could also be a snowball survey, where we ask their friends to join the survey sequentially.
- How do we analyze an endogenously formed network?

A network can be represented as a graph G = (V, E) (I'll use **y**) later instead.

- V is the set of vertices, or the agents in networks.
- *E* is the set of edges or the links between agents in networks.

We also define the following:

- $N(v) \subseteq V$  is the set of neighbors of agent  $v \in V$ .
- $I(v) \subseteq E$  is the set of edges that include  $v \in V$ .

### **ERGM Model**

ERGM is a model describing a graph  $\mathbf{y}$  with a probability in a general exponential form:

$$\pi(\mathbf{y}|\theta, \mathbf{z}) = \frac{1}{z(\theta)} \exp\left(\sum_{d=1}^{D} \theta_d s_d(\mathbf{y}) + \sum_{i=1}^{N} z_i f_i(\mathbf{x})\right) = \frac{\exp\left(\theta^{\mathrm{T}} \mathbf{s}(\mathbf{y}) + \mathbf{z}^{\mathrm{T}} \mathbf{f}(\mathbf{x})\right)}{z(\theta)}$$

where the sufficient statistics in our study are:

$$\theta^{\mathrm{T}} \mathbf{s}(\mathbf{y}) = \theta_{\nu} \nu(\mathbf{y}) + \theta_{\rho} \rho(\mathbf{y})$$

with

• 
$$\nu(\mathbf{y}) = \sum_{i,j} y_{ij} \# \text{ of edges}$$

• 
$$\rho(\mathbf{y}) = \sum_{i} \sum_{k>j} \sum_{j \neq i,k} y_{ij} y_{jk} \# \text{ of two-stars}$$

If we denote

$$\mathbf{q} = (\theta^{\mathrm{T}} \mathbf{s}(\mathbf{y}) + \mathbf{z}^{\mathrm{T}} \mathbf{f}(\mathbf{x}))$$

then the probability for each individual i to form link with any  $j \in V$  can be rewrite as

$$\mathbb{P}(i \leftrightarrow j | \mathbf{y}_{-ij}) = rac{e^{q_{ij}}}{1 + e^{q_{ij}}}.$$

As we have conditioned on a certain graph, we can now establish more on  $f(\boldsymbol{x})$  for this study:

$$f_{ij}(\mathbf{x}) = 1 - |x_i - x_j|$$

- There are two groups of potential customers in the market profile, young and senior, respectively.
- Young customers are more active in sharing fashion information.
- The network has a size of N. Suppose we have estimated the parameter of the sampled network.
- We have a budget to advertise  $|V^a|$  of them.
- We care about two indexes: (i) How active is the topic? (ii) How many people have received the information?

## Simulation

## **DGP & Estimation**

### DGP:

- N = 80,  $|V^a| = 15$
- For sufficient statistics, the coefficients are  $\theta_{\nu} = -5$  (edges),  $\theta_{\rho} = 0.01$  (two-stars).
- The group index  $g \in \{s, y\}$  with #s = #y, independent variable  $x_s \sim \text{Uni} (0, 1.2), x_y \sim \text{Uni} (0.96, 1)$
- We use the Metropolis-Hasting algorithm to generate networks.

#### Estimation:

- The generated networks are sampled and estimated with R package ergm
- For simplicity, we estimate the population network leaving the estimate unbiased without non-representative correction.

#### **True Network**



**Figure 1:** True network with  $\theta_{\nu} = -5$ ,  $\theta_{\rho} = 0.01$ , z = 1. Green points refer to senior agents, whereas yellow points refer to young agents.

- Locally, we can identify the exact behavior of individuals.
- We've received some information about what the network looks like.
- However, beyond local, how could we target those who are not in the samples?

## **Example Sampling**



**Figure 2:** Sampled data from true network. Green points refer to older agents, whereas yellow points refer to young agents.

### True Network (Circular)



**Figure 3:** True network in a circular layout. The ratio of average links in the group s and y is about 0.5.

Define the targeted nodes as  $V^a \in V$ 

• The empirical welfare for the active level is

$$W_l = |\{\bigcup_v I(v) | v \in V^a\}|$$

• The empirical welfare for the total number who have received the information as

$$W_N = |\{\bigcup_v N(v)|v \in V^a\}|$$

We define the loss as a quadratic loss. We take the square root of loss to better present it.

- **Complete Information**: Use mixed integer programming to target the top 15 agents that connect to most nodes with most links.<sup>1</sup>
- **Random**: Uniformly select 15 agents from the population, and target them at the true-network (after empirical realization).
- **Group-level Information**: Calculate the ratio of the average links in two groups, and randomly sample them according to the ratio.
- Network Information: Reconstruct the network by the MAP of Metropolis-Hasting posterior sampling, and assign treatment with mixed integer programming.

 $<sup>^{1}\</sup>mbox{Targeting}$  nodes are prior to links. After testing, targeting those with the most links is an efficient approximation for saving computation demands.

## **Targeting with Complete Information**



Figure 4: Optimal assignment with complete information.  $W_l = 58$ ,  $W_N = 44$ .

## Targeting with Random Assignment



Figure 5: Random assignment.  $W_l = 21$ ,  $W_N = 28$ .

## Targeting with Group Information



**Figure 6:** Assignment with group-level information.  $W_l = 20$ ,  $W_N = 25$ .

### **Targeting with Network Information**



Figure 7: Assignment with network information.  $W_l = 55$ ,  $W_N = 44$ .

#### Table 1: Summary of Results with Different Assignment Rules

| Туре        | $W_l$ | RI   | $W_N$ | R <sub>N</sub> |
|-------------|-------|------|-------|----------------|
| Complete    | 66.3  | —    | 45.2  | -              |
| Random      | 25.0  | 35.4 | 30.2  | 11.8           |
| Group-level | 27.7  | 32.4 | 30.8  | 10.3           |
| Network     | 57.2  | 14.2 | 40.8  | 6.3            |

- Network structural information outperforms all other assignment rules in both empirical welfare estimations.
- Random assignment and structural assignment perform similarly, as the edge distribution is approximately in a random field conditional on groups.
- Our structural estimate contributes significantly in sparse networks.
- It could be improved by better characterizing the social position of individuals, i.e. higher dimensions of homophily, to reduce exchangeability.
- I did not consider the out-sample variance of network estimates, which should be further established in future works.