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Introduction



Main Research Questions

• Is double-Metropolis Hasting (DMH) algorithm implementable
for exponential random graph models (ERGM)?

• What are the consequences of insufficient model selections?
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Motivation

• Network formation is Markov-dependent, and we want to
understand the dynamics.

• Networks in ERGM formulation is a doubly intractable statistical
model.

• Exchange algorithm (a Bayesian approach) is asymptotically
consistent for ERGM, but inefficient.
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Model Setup

ERGM is a model describing a graph y with a probability in a general
exponential form forms:

π(y|θ) = 1
z(θ)exp

( D∑
d=1

θdsd(y)
)

=
exp

(
θTs(y)

)
z(θ) (1)

where the sufficient statistics in our study are:

θTs(y) = θνν(y) + θρρ(y) + θτ τ(y)

where

• ν(y) =
∑

i,j yij # of edges
• ρ(y) =

∑
i
∑

k>j
∑

j ̸=i,k yijyjk # of two-stars
• τ(y) = 3

∑
i
∑

k>j
∑

j ̸=i,k yijyjkyki # of triangles
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Previous & Potential Approaches

• MCMC estimation (Snijders, 2002)
• DMH & Exchange algorithm approach (Caimo and Friel, 2013)
• Approximate Bayesian Computation (Yin and Butts, 2020)
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Our Model and Algorithms



DMH Algorithm

1. for t = 1 to T do
2. Generate θ′ ∼ h(·|θ)
3. Sample an auxiliary variable y′ ∼ π(y′|θ′) using an exact
sampler

4. Compute

r(θ, θ′, y′|y) = π(y|θ′)π(θ′)
π(y|θ)π(θ)

π(y′|θ)
π(y′|θ′)

h(θ|θ′, y)
h(θ′|θ, y)

5. Draw u ∼ Uniform(0, 1)
6. if u < r then set θ = θ′

7. end for

The normalizing constant z(θ) is canceled by introducing π(y′|θ). This
is the exchange algorithm proposed by Liang (2010).
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Exact Sampler: Markov dependencies

On a tie level, we can describe the probability to form a chosen edge
between note i and j as:

logit(yij = 1|ycij) = θ′δ(yij) (2)

where

• yij is a random variable state of the actor pair i, j.
• ycij is the complement of yij
• δ(yij) is the vector of the ”change statistics”, i.e.
δ(yij) = g(y+ij )− g(y−ij ), where g denotes the state of tie yij.
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Exact Sampler: MH Algorithm

1. set the true parameter θ̂
2. for t = 1 to T do
3. randomly choose i, j
4. define δ(yij) as

(1,deg(i) + deg(j)− 2×
∑
i

∑
j<i

∑
k̸=i,j

yikyjk,
∑
i

∑
j<i

∑
k ̸=i,j

yikyjk)

5. compute θ̂′δ(yij)
6. calculate

log(p) = (−1)yij · log(
exp(θ̂′δ(yij)

1− exp(θ̂′δ(yij))
) (3)

7. if min(log(p), 0) > log(Uni(0, 1)):
8. yij = 1− yij
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DMH Improvements i

1. A beta-binomial is first used to approach θinit0

2. Mixed adaptive MCMC is proposed by a linear combination of
random walk and covariance.

3. Hamiltonian MCMC may not work as we cannot derive the
gradient for the likelihood (even if we could, it cannot be
applied across different phase spaces).

4. We reject highly degenerated networks, i.e. networks generated
from any θ with an acceptance rate lower than 0.02.
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Simulation Results



Network generation and estimation

Given the parameter value, we use both ergm and our code to
generate two networks.
We consider 4 cases of estimation:

1. ergm simulated network + ergm and bergm parameter
estimation

2. ergm simulated network + our DMH code
3. our simulated network + our DMH code
4. our simulated network + ergm and bergm parameter estimation
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Network Generation

(a) ergm. edge: 38; 2-star: 72; triangle:
3

(b) our code. edge: 32; 2-star: 57; trian-
gle: 1

Figure 1: Parameter value: -3.5, 0.1, 0.5
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Case1: ergm network + ergm and bergm estimation

ergm: estimate with Monte Carlo MLE
• R Code

model <− sim_network ~ edges + ks ta r ( 2 ) + t r i a n g l e
est _ergm <− ergm (model )
summary ( est _ergm )

• Result

Parameter Mean Std.
θ0 (edge) -2.8456 0.4797
θ1 (2-star) -0.0762 0.1339
θ2 (triangle) 1.1726 0.6722
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Case1: ergm network + ergm and bergm estimation

bergm: using exchange algorithm and parallel adaptive direction
sampler to improve the mixing of Markov Chains (related to the
gamma and nchains)

• R Code

model <− sim_network ~ edges + ks ta r ( 2 ) + t r i a n g l e
est _bergm <− bergm (model , burn . in = 500 ,

main . i t e r s = 3000 , aux . i t e r s = 2500 ,
nchains = 8 , gamma = 0 . 6 )

summary ( est _bergm )

• Result

Parameter Mean Std.
θ0 (edge) -3.14444889 0.4874545
θ1 (2-star) -0.04660349 0.1659005
θ2 (triangle) -0.12884212 1.3766226
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MCMC Diagnostic bergm

14



Case2: ergm simulated network + our DMH code
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Case2: ergm simulated network + our DMH code
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Case3: our simulated network + our DMH code

Figure 2: Enter Caption
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Case3: our simulated network + our DMH code
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Case4: our simulated network + ergm and bergm estimation

ergm

Parameter Mean Std.
θ0 (edge) -3.53935 0.41757
θ1 (2-star) 0.11874 0.11842
θ2 (triangle) -0.04484 1.09843

bergm

Parameter Mean Std.
θ0 (edge) -3.36917773 0.4344070
θ1 (2-star) 0.05895917 0.1324414
θ2 (triangle) -0.64722396 1.2797613
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MCMC Diagnostic bergm
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Discussions



Exact Sampler: Problems

• How many iterations are considered asymptotically large
enough? 30000? 120000?

• Instability and degeneracies, i.e. different θ could lead to the
same configurations (Schweinberger, 2012).

• Hunter et al. (2008) argues that the k-star and triangles are in
nature degenerate, which implies the parameters in the model
may be unidentifiable.
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Exact Sampler: Realization

Figure 3: Distribution of sampled edges, two-stars, triangles from parameter:
(-3.5, 0.1, 0.5). 1000 samples, 30000 iterations
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The consequence of degeneracy i

Figure 4: edges: 42, two-stars: 95, triangles: 1; Parameter: (-5, -0.2, 5)
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The consequence of degeneracy ii

Figure 5: edges: 42, two-stars: 80, triangles: 1; Parameter: (-3.5, 0.1, 0.5)
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DMH: Differences

• bergm has implemented Gibbs sampler for proposing new θ,
while we used MH sampler

• How to derive the marginal density?
• Any accepted θ may be good enough?

• Our auxiliary network generating iterations is 30000, while we
chose 2500 iterations for bergm. Which generates good-quality
networks?
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DMH Improvements ii

1. Hyperparameters for acceptance rate and step size are updated
[under construction].

2. Simulated annealing: We define temperature as a metric related
to the observed s(y) and set up a tolerance for restarting and
mixing, naively related to approximate Bayes computation (ABC)
(Albert, Künsch, and Scheidegger, 2015) [under construction].
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Future Works

• Is it possible to target the parameters in the formation
mechanism directly via ABC? Could it avoid degeneracy (partially
yes).

• Without nodal (heterogeneous) effects, the
missing-not-at-random data may be applicable within this
framework.

• Model selection either on the ERGM family or the dynamical
system by Bayesian statistics should be further established.

• We will optimize the hyperparameter updating rules, as well as
construct priors with empirical Bayes.

• Examine a version of the Gibbs sampler
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